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Abstract
Stochastic fractals, generated from combinations of deterministic fractals, have
the advantage of being tractable to some extent, but also being closer to
real materials, since they are partially disordered. In the present work, we
focus our attention on the remarkable nonlinear mixing behavior exhibited by
fractals generated as random combinations of two different Sierpinski carpet
generators. When patterns with different anomalous diffusion exponents and
the same or different fractal dimensions are combined together, the effective
diffusion exponent cannot in general be expressed as a linear weighted average
of the diffusion exponents of the constituents. The effective exponent may
show a maximum or minimum for certain compositions. An explanation of
this interesting phenomenon is offered on the basis of details of the carpet
generator, particularly on the number and position of ‘connection points’,
which determine the connectivity of the ‘fractal composite’.

PACS numbers: 61.43.Hv, 66.30.−h

1. Introduction

Mixtures or composites of two different materials with varying proportions are generally
expected to follow Vegard’s law [1]. That is, suppose a property X has different values for
components 1 and 2, the effective X for a mixture is usually given by

X(eff) = xX(1) + (1 − x)X(2), (1)

where x and (1 − x) are the fractions in which components 1 and 2 are mixed. This implies
a linear variation between X(1) and X(2), which is indeed observed in several properties of
composites and alloys. However, nonlinear behavior [2] is also encountered in many cases,
e.g. in electrical, dielectric and elastic properties of composites. This behavior is difficult to
explain from mean field theories, often percolation-type [3] phenomena are responsible. Such
effects are well known in ion conductors, when an insulator is dispersed into a poor conductor,
a remarkable increase in ion conductivity is observed [4], on the other hand two different
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ion-conducting glasses with fairly good conduction properties show very poor conduction
when mixed together [5, 6].

In the present work, we report this type of behavior in diffusive properties of a ‘fractal
composite’. A fractal with a certain structure is characterized by its diffusion exponent
dw defined below. We show that when two fractals with different dw are mixed to form a
composite the effective dw does not necessarily follow Vegard’s law. The composite fractal
may have better or worse conducting properties than its constituents. We simulate several
such composites and investigate anomalous diffusion on them. We try to explain on the basis
of the structural details of the generators, in which case the composite will conduct better and
in which case worse. Since many real materials exhibit fractal structure [7, 8], we expect this
study to be of practical importance for disordered systems.

The diffusion behavior on fractal structures [9] is different from normal diffusion. It is
known that in the case of a Euclidean lattice, i.e. normal diffusion, the mean square distance
〈r2〉 traveled by diffusing particles at time step t is given by

〈r2〉 = Dt, (2)

where the constant D is the diffusion coefficient. However, on fractal structures, the mean
square displacement is no longer proportional to the time, but

〈r2〉 ∝ tγ , (3)

where γ = 2
dw

is the anomalous diffusion exponent and dw is the random walk dimension of
the fractal. In the case of normal diffusion, dw equals 2, so that γ = 1, hence the scaling
relation becomes linear and coincides exactly with (2). When dw �= 2, diffusion is said to be
anomalous.

In fractals, the random walk exponent is usually greater than 2, what implies sub-diffusive
behavior, which means that on average the walker moves slower than at normal diffusion. In
general, such diffusive behavior is studied though performing random walk simulations.

Anomalous diffusion, particularly sub-diffusion has been extensively studied. The earlier
literature is reviewed in [9, 10]. Interest in the topic continues and more recent studies show
that sub-diffusion may be induced by disorder [11]. The survival probability of sub-diffusive
walkers in the presence of traps is simulated by Ruiz-Lorenzo et al [12]. Sub-diffusion of
colloidal particles near the glass transition is discussed in [13]. The role of sub-diffusion in
surface diffusion is discussed by Sancho et al [14].

In fact, Klafter and Sokolov [15] suggest that anomalous diffusion is the rule rather than
the exception in the natural world. In support, they cite the widespread occurrence of sub-
diffusion observed from the flight patterns of birds to the distribution of proteins in biological
membranes and even the working of photocopier machines.

Another important property of fractals is the ‘fractal dimension’ df , which expresses the
scaling relation between its ‘mass’ M and ‘radius’ r:

df = log M

log r
. (4)

In order to model disordered structures, regular fractals like Sierpinski carpets (SC) are
often used [16]. The SC is a particularly simple model, which can be created in a wide variety
of patterns with finite or infinite ramification. It is a two-dimensional model but may be
generalized to three dimensions as variations of the Menger sponge [16]. Regular SCs are
characterized by a particular generator. In the present work, we consider randomized SC that
are based on different generators. The diffusion properties of the regular SC generated by
single patterns have already been studied [17, 18].
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Figure 1. (Left) Order of subsquares and the classic Sierpinski generator; (right) different
generators, each with another removed subsquare.

Figure 2. Carpet at the third level: (left) classic regular SC; (right) related random SC.

A generator is a square, divided into n × n congruent subsquares, where m of them are
labeled black and n2 −m are labeled white. In our model, the black squares are ‘allowed’ sites
and the white are ‘blocked’. Figure 1 illustrates examples of a generator. Here, the square is
divided into 3 × 3 makes 9 equal subsquares, and if, for example, the subsquare with number
5 is removed, the result is a single generator. In creating a regular fractal, this generator will
be applied repeatedly. The black subsquares remain, whereas the white ones are removed and,
in the next iteration stage, each black square is again divided into n × n equal subsquares and
the pattern of the generator is applied on it. This construction procedure repeated ad infinitum
generates the self-similar regular SC. If we stop the iteration process at the third stage, we
will get the SC shown in figure 2 (left). In this example, the ‘mass’ of the SC is equal to the
number of black squares (here 83), while its ‘radius’ equals its linear size (here 33). With (4),
we determine the fractal dimension of the given SC as

df = log m

log n
= log 83

log 33
= 1.8928. (5)

However, the deterministic model does not capture the randomness of the local fractal
structure present in real materials. A more appropriate model is thus based on random fractal
structures. In contrast to the regular one constructed above, random fractals with the same
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‘mass’ can be generated. For this purpose, it is necessary to change the generator randomly by
removing incidentally another subsquare out of the given nine, instead of always the fifth one.
As an example, in the first iteration stage the black square is divided into 3 × 3 subsquares
and one of the subsquares (number 8) is removed. In the next level, this procedure is repeated
with the eight remaining subsquares, but in each subsquare a different subsquare is removed
at random. In other words, a random mixture of the generators in figure 1 (right) is used.
At the third iteration level, this procedure results in the random fractal shown in figure 2
(right). This SC is similar to that constructed by Ben-Avraham and Havlin [9]. In 1996, Reis
studied random walks on such structures [19]. He analyzed the scaling properties of the mean
square displacement after N-step walks and investigated the anomalous diffusion exponents.
He found that the exponents obtained are very close to the estimates for the carpets with the
same fractal dimension.

Recently [20], we performed a similar investigation. But our construction of the random
fractal, and, therefore, our results are quite different from Reis. The main difference is that
we have used mixtures of only two generators in the iterative creation of each random fractal
structure. One important result is that even carpets originated from mixtures of generators
with the same df and dw show variations in their observed effective dw.

In this paper, we continue the simulations in [20], but with rather different patterns of
generators. In addition to our former results, some new and interesting behaviors are observed.
We show that combinations of a particular pattern with its rotated ‘image’ are not the same
if the rotating angle is different. We have also turned our attention closer to geometrical
properties such as traps and shortest paths for crossing over a cell. These new results will be
discussed in detail below.

It must be kept in mind, however, that two-dimensional modeling of real three-dimensional
systems can at most have limited success. Problems involving connectivity, such as percolation
[3], are very different in two and three dimensions. A little reflection makes this clear, e.g.
in a random system composed of ‘black’ and ‘white’ sites, in 2D it is not possible to have
a bi-connected system, where both the black and white sites simultaneously percolate along
both the X- and Y-directions. But such a situation can easily be visualized in 3D. So we do
not expect the results of the present 2D simulations to be directly comparable to experimental
results, but they should nevertheless throw some light on the problem.

2. Connection points and anomalous diffusion

In the previous section, we showed the SC as a particular case belonging to one class of
deterministic fractals in the two-dimensional Euclidean space. Much work has been done in
this field, focused on modeling porous materials [18, 21] and diffusion on it [10, 17, 22].

Regular random SCs are constructed by applying at least two generators, instead of only
one in deterministic cases. Generating a regular random fractal, first we select a generator
at random for the first iteration step. The resulting structure is called a ‘cell’ and all black
squares in the cell are referred to ‘active sites’ of this one. In the next iteration step, for each
subsquare of a cell a generator is chosen at random from the given set. Again, these generators
are applied to each black subsquares resulting in sub-subsquares labeled according to the
selected generator. During this iteration step, the subsquares become cells. This construction
procedure could be repeated ad infinitum, but in practice it is stopped at a finite iteration
depth l.

Cells contain some special sites which we call connecting points. A connecting point is
a black square that has neighboring sites on different cells. In figure 3, these connections are
marked by white arrows. The neighbor is also a connecting point of its cell. Connecting points
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Figure 3. Active connections for several circumstances.

A
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df = 1.89, dw = 2.14 df = 1.59, dw = 2.46 df = 1.37, dw = 2.37

df = 1.44 df = 1.44 df = 1.44 df = 1.77 df = 1.77
dw = 2.54 dw = 2.54 dw = 2.54 dw = 2.14 dw = 2.14

Figure 4. The generators A–H used for constructing carpets.

may be single or double. Single connecting points have only one neighbor in another cell.
Double connecting points are connected with two different connecting points of two different
cells and can only be found at corners of cells. The more connections a cell has, the higher
the probability to contact with other cells. We define Cp as the total number of connections
from a cell to its neighbors.

3. Modeling carpets and calculating diffusion exponents

In this work, we use eight generators in total, named A, B, . . . , H, and mix them in pairs to
create random fractals. Generators A, B and C are of size 5×5 and the rest are 3×3. Generator
E is obtained by rotating D by 90◦ clockwise, generator G is the result of a 180◦ rotation of D
and generator H is obtained by rotating F counterclockwise by 90◦. The generators are shown
in figure 4.

From 5 × 5 generators A, B and C, we constructed 11 combinations for each pair of
generators: AxC100−x and BxC100−x . With 3 × 3 generators D, E, F, G and H, we created
11 combinations for each pair that gives DxE100−x, DxG100−x, FxD100−x and FxH100−x with
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Figure 5. Log–log plot of the mean-squared displacement: (solid line) fractal D40E60; (symbols)
fractals AxC100−x for x = 0, . . . , 100.

x = {0, 10, 20, . . . , 100}. To obtain a good average for dw of the random walk simulation, we
created ν = 100 different carpets for each combination.

We iterated 5 × 5 carpets up to level l = 6 and 3 × 3 carpets up to level l = 8. Then
we combine carpets with identical copies of itself in all space directions in order to get
homogeneous structures for large length scales.

The diffusion is investigated by performing random walks on these carpets using the blind
ant algorithm. At each time step ti , the j th walker chooses one random direction out of four
(upward, downward, to the left and to the right) with equal probability (25%). If the neighbor
square in the selected direction is allowed, the walker will move to that site, otherwise it
will stay and wait for an opportunity to move in the next time step. For each time step, we
determine the squared distance from its initial site (end-to-end vector) in order to obtain the
average value of 〈r2(ti)〉 over N walkers as a function of time

〈r2(ti)〉 = 1

N

N∑
j=1

r2
j (ti) −


 1

N

N∑
j=1

rj (ti)




2

, (6)

where ti = (
8
√

2)i, i = 56, . . . , 144 with tmax = (
8
√

2)144 = 262 144. Using these data, we
get 〈r2〉max < 10 000 and thus r with a typical order of r ≈ 100. This value of r guarantees
that walkers still walk within the first iterator after tmax time steps, and thus 〈r2〉 has not been
seriously affected by boundaries. To avoid the fluctuations due to the local geometry of a
particular sample, we take the average of 〈r2〉k over ν realizations of random fractals:

〈r2〉 = 1

ν

ν∑
k=1

〈r2〉k. (7)

For each realization, we use N = 20 000 walkers for a good approximation. The solid line in
figure 5 shows a typical 〈r2〉 versus time plot, it is a rather straight line. Thus, the randomness
of the fractal does not alter the anomalous diffusion behavior with a power-law time behavior.
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Table 1. Simulation results for the mixtures AxC100−x and FxD100−x .

dw dw

x AxC100−x FxD100−x x AxC100−x FxD100−x

0 2.370 180 2.541 347 22 2.446 839 2.600 957
10 2.413 639 2.578 367 24 2.448 649 2.601 136
20 2.443 633 2.597 414 26 2.451 049 2.601 783
30 2.456 525 2.601 529 28 2.454 077 2.601 740
40 2.450 712 2.592 068 30 2.456 525 2.601 529
50 2.430 566 2.565 014 32 2.454 541 2.600 591
60 2.391 684 2.524 204 34 2.454 489 2.599 686
70 2.334 419 2.465 063 36 2.452 853 2.595 916
80 2.271 119 2.383 253 38 2.452 963 2.594 276
90 2.201 776 2.277 535

100 2.135 509 2.139 521

From the slope of these straight lines in log–log plots of 〈r2〉 over time, we can calculate the
random walk dimension dw:

〈r2〉 ∝ tγ ⇒ γ ∝ log 〈r2〉
log t

⇒ dw = 2

γ
. (8)

4. Results and discussion

4.1. Diffusion decreases when mixing generators

Table 1 shows the resulting dw as a function of the percentage x of generator A in combinations
AxC100−x and percentage x of generator F in combinations FxD100−x . The value of dw reaches
a peak which can clearly be seen in the top of figure 6. To locate the maximum to a higher
degree of precision, we additionally analyzed the fractions x as shown in the right-half of
table 1.

First, we consider the combinations of AxC100−x . Starting at x = 0, we can observe an
increase of dw from 2.3702 to 2.4565 at x = 30, followed by a decrease to 2.1356. This
behavior can be explained as follows.

When x = 0, all cells of the carpet are labeled according to generator C, which is a regular
SC created by generator C with Cp = 4 for each cell. While x is increasing, some cells, which
were occupied by generator C, are replaced by generator A. If a cell A is put among 4 cells C,
its Cp still equals 4, but the number of active sites increases from 9 to 21. In this range of x, the
number of cells A surrounded by cells C is much larger than the number of cells C surrounded
by cells A. Consequently, the walkers have to walk more often inside a cell before they can
escape through one connecting point. Therefore, the velocity of the diffusion drops to the
slowest value at x ≈ 30. But, as x continues to rise to 100, the Cp of one cell also increases
from 4 to 12. Thus, a walker has more opportunities to escape from one cell to another. So,
the diffusion velocity increases and dw decreases.

We obtained a similar curve for the combinations FxD100−x in the right part of figure 6.
When x = 0, all cells of the carpet are marked by generator D. Each cell has Cp = 4 and 6
allowed squares. As x increases, some cells F replaces cells D and they are surrounded by a
number of cells D. If a cell F is put among four cells D, we can observe that Cp = 5 and we
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Figure 6. Results for mixtures A–C and F–D: (top) dw(x); (middle) original carpets; (bottom)
mixtures with changed connecting points (marked by arrows).

have seven black sites in the cell. Here, Cp increases, but due to the shape of generator F, the
shortest path through the cell also increases from 3 to 4, if walker travels along the horizontal
or vertical direction. The randomness also creates a ‘dead-end’ site, which is marked by a dot
in figure 6(h). Longer shortest paths, ‘dead-end’ sites and a larger number of active sites are
reasons for the increase of dw from 2.5413 to 2.6018, while x reaches 26. As x continues to go
up, more and more cell F appears. In other words, we have a higher probability to find a cell
D amid four cells F. Here, Cp still equals 5, but the ‘dead-end’ site disappears. The shortest
path to travel along the horizontal direction is still 4, but the shortest path traveling along the
vertical direction falls to 3, hence dw decreases. When x rises to 100, we can find only cells F,
the shortest path along each direction drops to 3 and Cp raises to 10. Therefore, dw decreases,
i.e. the diffusion velocity increases.

4.2. Strange behaviors—diffusion enhanced

Table 2 and figure 7 show the resulting average dw as a function of the percentage x of
generator F in combinations FxH100−x and the corresponding function of the percentage x of
the generators D in combinations DxG100−x . These two cases are quite different in comparison
to the simulations in the previous section. We can see that both curves are symmetric according
to x ≈ 50, where the curves reach their extremum. But in contrast to all other cases the
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Figure 7. Results for mixtures F–H and D–G: (top) dw(x); (middle) original carpets; (bottom)
mixtures with changed connecting points (marked by arrows) and shortest paths (dashed lines).

Table 2. Simulation results for the mixtures FxH100−x and DxG100−x .

dw dw

x FxH100−x DxG100−x x FxH100−x DxG100−x

0 2.139 345 2.541 081 40 2.290 930 2.508 936
10 2.201 471 2.528 773 42 2.292 812 2.507 315
20 2.244 527 2.518 822 44 2.294 020 2.507 591
30 2.274 242 2.512 547 46 2.294 986 2.507 018
40 2.290 930 2.508 936 48 2.295 349 2.507 021
50 2.295 841 2.506 715 50 2.295 841 2.506 715
60 2.289 660 2.507 847 52 2.295 802 2.507 078
70 2.274 382 2.513 084 54 2.295 030 2.507 173
80 2.245 373 2.520 011 56 2.293 531 2.507 129
90 2.202 372 2.529 458 58 2.292 342 2.507 570

100 2.139 616 2.540 945 60 2.289 660 2.507 847

combinations of DxG100−x exhibit a minimum, which implies that diffusion of this mixture is
faster than it is on the pure SCs.

The symmetry of the two curves results from the choice of the pairs of generators. As we
mentioned before, generator H is generator F rotated by 90◦. The same holds for generator
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G, which is the 90◦ rotated generator D. In other words, when we rotate the hole SC based on
generator F (or D), we will get the SC based on generator H (or G). Therefore, FuH100−u and
F100−uHu with 0 � u � 100 are equivalent to each other.

Analyzing dw of the mixture of generators F and H, we found that Cp of each cell is
statistically 10 and the shortest path to cross a cell is always 3. In order to explain the changes
of dw for different mixing ratios, we have to investigate the number of shortest paths. This must
be done not only in the smallest cell (last iteration level), but also for the cells according to a
higher level of iteration (illustrated in figures 7(a) and (b)). At x = 0, generator H occupies
all cells of the fractal. Figure 7(a) illustrates a part of such a carpet, which coincides with one
cell H. Dashed lines exhibit all possible shortest paths that walkers could use to travel across
the cell. We can observe four vertical lines and one horizontal one, which leads to five lines
in total. As x increases, some cells of H will be replaced by cells F. This creates defects in
the self-similarity structure and breaks one or two shortest paths. For higher values of x, more
cells H are replaced, so more defects appear and less dashed lines can be observed. Hence the
number of total shortest paths decreases from five to four (figure 7(d)) to three (figure 7(c)).
For this reason, it takes more time for the walkers to travel through a cell, thus the velocity
of the diffusion also decreases. When x = 50, the distribution of cells F and H are evenly
distributed and cells like in figure 7(a) can be observed rarely. In most of the cases, we can
find cells with only three dashed lines and therefore the diffusion reaches the lowest value. If x
continues to go up, F cells occur more and more and the number of dashed lines can increase.
So dw decreases, i.e. the diffusion gets faster. When x = 100, only generator F occupies all
cells in the carpet and again we find five dashed lines (figure 7(b)).

A completely different behavior is shown in the third and sixth columns of table 2 and
in the upper-right of figure 7. Here, the mixtures of generators D and G are presented. dw

exhibits a minimum at x = 50. The very surprising result is that diffusion is enhanced rather
than slowed down by increasing disorder. Again, the above reasoning helps us to understand
this behavior. In the cases of the pure SCs, each cell has Cp = 4. But this number will change
if some cells G are replaced by cells D and one of the new cells is put ‘above’ one cell G. In
figures 7(g) and (h), we can observe five instead of four connections. At x = 50, cells D and
G are distributed uniformly. The probability to find a cell D or a cell G are equal and further
on the probability to find a cell D placed above cell G reaches its maximum, therefore Cp is
maximal in the whole carpet. Consequently, the walkers have more possibilities to escape
out of a cell and so they travel faster. Therefore, dw decreases and thus the diffusion will be
enhanced.

In three of the four mentioned cases (A–C, F–D, F–H), Cp of each combination is always
equal to or less than the Cp of the original SCs, whereas in the case of D–G the Cp of the
combinations is always larger than that of the pure ones. So, in general, we find that decreasing
Cp induces an increase of dw with a maximum at a certain mixing ratio, and increasing Cp

leads to a decrease of dw and a minimum will appear.
It may be noted that if the basic generator is anisotropic, such nonlinear effects are more

likely to show up, e.g. in the combinations of F–H in figure 7, the difference between dw for
the pure systems (2.14), from the 50% mixture is 0.15, which is quite significant. The pair
D–G on the other hand, is relatively more isotropic, here the difference (in this case negative)
is of magnitude 0.04, much smaller compared to 2.54, for the pure systems.

4.3. Other cases

In contrast to the previous cases, we show two more simulations by mixing the generators
B and C as well as D and E, respectively, which exhibit a quite different behavior. Table 3
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Figure 8. Results for mixtures B–C and D–E: (top) dw(x); (bottom) mixtures with connecting
points (marked by arrows).

Table 3. Simulation results for the mixtures BxC100−x and DxE100−x .

dw

x BxC100−x DxE100−x

0 2.370 363 2.540 817
10 2.385 102 2.539 910
20 2.399 458 2.539 766
30 2.410 993 2.538 337
40 2.419 952 2.539 296
50 2.429 398 2.538 529
60 2.438 875 2.538 803
70 2.444 701 2.538 664
80 2.448 729 2.539 696
90 2.454 084 2.540 625

100 2.456 737 2.540 893

and figure 8 show the resulting average dw as a function of the percentage x of generator B
in combinations BxC100−x and DxE100−x . These functions dw are different from any previous
cases. In figure 8, we can see the curve for the combinations BxCx−100 starting for x = 0 with
dw = 2.3703 and increasing to 2.4567 for x = 100 without observing any extremum. This
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behavior can be understood by the following explanation. While mixing B and C, in all cases
only four single connecting points appear and the length of the shortest paths is always 5. So
the increase of the number of active sites from 9 to 13 is the only reason for the shift of dw

between the two original dw.
In the last case, where we mix generators D and E, no significant curvature for dw occurs.

In fact, a horizontal line within the statistical fluctuation appears. There is neither a maximal
nor a minimal value. That is, due to the chosen generators, both patterns have the same dw

and df . The number of connection points (Cp = 4), the length of the shortest path and the
number of active sites are equal for both generators. That is, also the case if we mix these
generators, all values remain constant. So nothing changes inside the random fractal and we
get the horizontal line for dw.

5. Conclusions

We studied random SCs by mixing pairs of different generators. The investigation of
several mixtures with varying composition shows that such structures display a power-law
relation similar to completely deterministic fractals, and random walks are characterized by
an exponent dw.

We have shown that the effective diffusion properties of a mixture of two different
deterministic fractals is not necessarily a linear combination of the properties of the
constituents. The diffusion exponent may be enhanced, implying a worse diffusivity, or
reduced, implying better diffusivity of the composite, compared to both the constituents. An
explanation of which effect prevails, can be offered, by scrutinizing the ‘connecting points’
which provide access from one fractal cell to the next. This fact emphasizes the role of
the detailed geometry of the components, rather than an average property such as the fractal
dimension df . Combinations more likely to provide a spanning percolation path through the
whole system, provide better diffusivity.
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